Back to Search Start Over

Ultra-uniform MIL-88B(Fe)/Fe3S4 hybrids engineered by partial sulfidation to boost catalysis in electro-Fenton treatment of micropollutants: Experimental and mechanistic insights.

Authors :
Ye, Zhihong
Zhang, Wenfeng
Lanzalaco, Sonia
Zhao, Lele
Sirés, Ignasi
Xia, Pan
Zhai, Jun
He, Qiang
Source :
Chemical Engineering Journal. 2023 Part 2, Vol. 455, pN.PAG-N.PAG. 1p.
Publication Year :
2023

Abstract

[Display omitted] • MIL-88B(Fe)/Fe 3 S 4 hybrids for effective water treatment by heterogeneous electro-Fenton. • Hybrid catalyst: highly uniform composition due to excellent distribution of small Fe 3 S 4. • Sulfidation allows breaking the activity-stability trade-off for high performance HEF. • Good recyclability of hybrids and fast trimethoprim removal even in urban wastewater. • Great catalytic activity and degradation mechanism confirmed by DFT calculations. Fe-based metal–organic frameworks are promising catalysts for water treatment, although their viability is hampered by the slow regeneration of active Fe(II) sites. A facile sulfidation strategy is proposed to boost the catalytic activity of MIL-88B(Fe) in heterogeneous electro-Fenton (HEF) treatment of organic micropollutants at mild pH. The synthesized MIL-88B(Fe)/Fe 3 S 4 hybrids possessed numerous and durable unsaturated iron sites, acting the S2− atoms as electron donors that enhanced the Fe(II) recycling. The sulfidated catalyst outperformed the MIL-88B(Fe), as evidenced by the 7-fold faster degradation of antibiotic trimethoprim by HEF and the fast destruction of micropollutants in urban wastewater. The hybrid catalyst was reused, obtaining >90% drug removal after four runs and, additionally, its inherent magnetism facilitated the post-treatment recovery. Electrochemical tests and DFT calculations provided mechanistic insights to explain the enhanced catalysis, suggesting that the accelerated Fe(III)/Fe(II) cycling and the enhanced mass transport and electron transfer accounted for the efficient trimethoprim degradation. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
13858947
Volume :
455
Database :
Academic Search Index
Journal :
Chemical Engineering Journal
Publication Type :
Academic Journal
Accession number :
161399471
Full Text :
https://doi.org/10.1016/j.cej.2022.140757