Back to Search Start Over

Geostationary Full-Spectrum Wide-Swath High-Fidelity Imaging Spectrometer: Optical Design and Prototype Development.

Authors :
Zhu, Jiacheng
Zhao, Zhicheng
Liu, Quan
Chen, Xinhua
Li, Huan
Tang, Shaofan
Shen, Weimin
Source :
Remote Sensing. Jan2023, Vol. 15 Issue 2, p396. 23p.
Publication Year :
2023

Abstract

The optical system of an imaging spectrometer working on a geostationary earth orbit (GEO) covering a full optical spectrum of 0.3–12.5 μm is analyzed and designed. It enables a ground coverage of 400 × 400 km by internal scanning and achieves a high spatial resolution of 25 m. The full spectrum is divided into five sub-bands, and each band adopts four spectrometers to splice in the field of view to achieve the ultra-long slit required by the wide swath. The total length of the slit is up to 241.3 mm. This paper focuses on compact spectrometers with long slits that can meet the splicing requirements and points out that low spectral distortions, low stray light, high signal-to-noise ratio, and uniform spectral response are necessary for high-fidelity performance. The Offner and Wynne–Offner high-fidelity spectrometers based on convex blazed gratings are designed, and prototypes of each band are developed as well. The properties of long slits and convex blazed gratings are presented. The maximum length of a single slit is 61.44 mm. The groove density of gratings for five bands ranges from 8.8 lp/mm to 312.1 lp/mm, and the peak efficiency is up to 86.4%. The alignment and test of the spectrometers are introduced. Results show that the developed spectrometers have high fidelity and fulfill all requirements. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
2
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
161479410
Full Text :
https://doi.org/10.3390/rs15020396