Back to Search Start Over

Fabrication and Performance Evaluation of Gelatin/Sodium Alginate Hydrogel-Based Macrophage and MSC Cell-Encapsulated Paracrine System with Potential Application in Wound Healing.

Authors :
Yao, Hang
Yuan, Xiaohui
Wu, Zhonglian
Park, Sumin
Zhang, Wang
Chong, Hui
Lin, Liwei
Piao, Yuanzhe
Source :
International Journal of Molecular Sciences. Jan2023, Vol. 24 Issue 2, p1240. 15p.
Publication Year :
2023

Abstract

A gelatin/sodium alginate-based hydrogel microsphere has been fabricated after reaction condition optimization. Macrophages (RAW246.7) and adipose mesenchymal stem cells (ADSC) have been subsequently encapsulated in the microsphere in order to construct a 3D paracrine system for wound healing treatment. The synthesized microsphere displayed neglectable cytotoxicity toward both encapsulated cells until 10 days of incubation, indicating promising biocompatibility of the microsphere. A qRT-PCR and ELISA experiment revealed positive regulation of cytokines (Arg-1, IL-6, IL-8, IL-10, bFGF, HGF, VEGF, TLR-1, and CXCL13) expression regarding macrophage phenotype transformation and anti-inflammatory performance both inside the microsphere and in the microenvironment of established in vitro inflammatory model. Additionally, positive tendency of cytokine expression benefit wound healing was more pronounced in a fabricated 3D paracrine system than that of a 2D paracrine system. Furthermore, the 3D paracrine system exhibited more efficiently in the wound healing rate compared to the 2D paracrine system in an in vitro model. These results suggested the current paracrine system could be potentially used as a robust wound healing dressing. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
24
Issue :
2
Database :
Academic Search Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
161482660
Full Text :
https://doi.org/10.3390/ijms24021240