Back to Search Start Over

Unveiling the reactivity of truxillic and truxinic acids (TXAs): deprotonation, anion...H–O, cation...O and cation...π interactions in TXA0...Y+ and TXA0...Z− complexes (Y = Li, Na, K; Z = F, Cl, Br)

Authors :
Kabuyaya Isamura, Bienfait
Patouossa, Issofa
Muya, Jules Tshishimbi
Lobb, Kevin Alan
Source :
Structural Chemistry. Feb2023, Vol. 34 Issue 1, p97-112. 16p.
Publication Year :
2023

Abstract

Herein, we report a quantum chemistry investigation of the interaction between µ-truxinic acid, referred to as TXA0, and Y+ (Y = Li, Na, K) and Z− (Z = F, Cl, Br) ions using M06-2X, B3LYP and ω B97XD functionals in conjunction with the 6–31 + + G(d,p), aug-cc-pVDZ(-X2C) and 6–311 + + G (d, p) basis sets. Our computations suggest that Y+ cations can bind to TXA0 through several combinations of cation...O and cation-π interactions, while Z− anions generally establish anion...H–O contacts. Predicted binding energies at the M06-2X/6–311 + + G(d,p) level range between − 26.6 and − 70.2 kcal/mol for cationic complexes and − 20.4 and − 62.3 kcal/mol for anionic ones. As such, TXA0 appears as an amphoteric molecule with a slight preference for electrophilic (cation... O) attacks. Furthermore, the most favourable binding site for cations allows for the formation of O...cation...O interactions where the cation is trapped between O37 and O38 atoms of TXA0. Anions do not behave uniformly towards TXA0: while the fluoride anion F− induces the deprotonation of TXA0, Br− and Cl− do not. All of these structural insights are supported by topological calculations in the context of the quantum theory of atoms in molecules (QTAIM). Finally, SAPT0 analyses suggest that TXA0...Y+ and TXA0...Z− complexes are mainly stabilized by electrostatic and inductive effects, whose combined contributions account for more than 60 percent of the total interaction energy. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10400400
Volume :
34
Issue :
1
Database :
Academic Search Index
Journal :
Structural Chemistry
Publication Type :
Academic Journal
Accession number :
161515419
Full Text :
https://doi.org/10.1007/s11224-022-01965-5