Back to Search Start Over

The used automobile catalytic converter as an efficient catalyst for removal of malathion through wet air oxidation process.

Authors :
Isgoren, Melike
Gengec, Erhan
Veli, Sevil
Hassandoost, Ramin
Khataee, Alireza
Source :
International Journal of Hydrogen Energy. Feb2023, Vol. 48 Issue 17, p6499-6509. 11p.
Publication Year :
2023

Abstract

The automobile catalytic converter (ACC) contains a huge number of precious metals as catalysts. When an ACC fails to meet standards, it is removed from the exhaust of an automobile but retains some catalytic activity. However, the recovery and/or activation of this waste is a high-cost process and includes several chemical treatments. Catalytic wet air oxidation (CWAO) has been reported as an effective wastewater treatment method. The most important disadvantage of CWAO is cost-nonefficiency. Herein, to overcome these problems, the simple recovery of catalysts from waste ACC for reuse in CWAO was investigated. The optimum conditions of reaction were investigated through response surface methodology (RSM). The optimum removal efficiency was 88% when the reaction conditions were set on the 20 bar of pressure at 111.5 °C over 77 min and using 0.41 g of recovered catalyst. In addition, toxicity testing was performed on a model of malathion-contaminated wastewater before and after CWAO treatment. Final product identification was performed which showed that CWAO eliminated the toxicity of wastewater and was determined to be malaoxon, present at acceptable concentrations, and tributyl phosphate. In conclusion, there may be important potential for the use of recovered ACC catalyst in the treatment of toxic wastewater. [Display omitted] • A UACC was used as catalyst in wet air oxidation. • Catalyst was simply recovered through a simple grounding and washing. • The WACC is able to remove malathion from aqueous solution through the CWAO. • Malathion completely was degraded and non-toxic intermediates were generated. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03603199
Volume :
48
Issue :
17
Database :
Academic Search Index
Journal :
International Journal of Hydrogen Energy
Publication Type :
Academic Journal
Accession number :
161554022
Full Text :
https://doi.org/10.1016/j.ijhydene.2021.08.020