Back to Search Start Over

Ultrasound targeted microbubble destruction-triggered nitric oxide release via nanoscale ultrasound contrast agent for sensitizing chemoimmunotherapy.

Authors :
Zhao, Yading
Shi, Dandan
Guo, Lu
Shang, Mengmeng
Sun, Xiao
Meng, Dong
Xiao, Shan
Wang, Xiaoxuan
Li, Jie
Source :
Journal of Nanobiotechnology. 1/30/2023, Vol. 21 Issue 1, p1-17. 17p.
Publication Year :
2023

Abstract

Immunotherapy had demonstrated inspiring effects in tumor treatment, but only a minority of people could benefit owing to the hypoxic and immune-suppressed tumor microenvironment (TME). Therefore, there was an urgent need for a strategy that could relieve hypoxia and increase infiltration of tumor lymphocytes simultaneously. In this study, a novel acidity-responsive nanoscale ultrasound contrast agent (L-Arg@PTX nanodroplets) was constructed to co-deliver paclitaxel (PTX) and L-arginine (L-Arg) using the homogenization/emulsification method. The L-Arg@PTX nanodroplets with uniform size of about 300 nm and high drug loading efficiency displayed good ultrasound diagnostic imaging capability, improved tumor aggregation and achieved ultrasound-triggered drug release, which could prevent the premature leakage of drugs and thus improve biosafety. More critically, L-Arg@PTX nanodroplets in combination with ultrasound targeted microbubble destruction (UTMD) could increase cellular reactive oxygen species (ROS), which exerted an oxidizing effect that converted L-Arg into nitric oxide (NO), thus alleviating hypoxia, sensitizing chemotherapy and increasing the CD8 + cytotoxic T lymphocytes (CTLs) infiltration. Combined with the chemotherapeutic drug PTX-induced immunogenic cell death (ICD), this promising strategy could enhance immunotherapy synergistically and realize powerful tumor treatment effect. Taken together, L-Arg@PTX nanodroplets was a very hopeful vehicle that integrated drug delivery, diagnostic imaging, and chemoimmunotherapy. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14773155
Volume :
21
Issue :
1
Database :
Academic Search Index
Journal :
Journal of Nanobiotechnology
Publication Type :
Academic Journal
Accession number :
161580146
Full Text :
https://doi.org/10.1186/s12951-023-01776-8