Back to Search Start Over

StrokeViT with AutoML for brain stroke classification.

Authors :
Raj, Rishi
Mathew, Jimson
Kannath, Santhosh Kumar
Rajan, Jeny
Source :
Engineering Applications of Artificial Intelligence. Mar2023, Vol. 119, pN.PAG-N.PAG. 1p.
Publication Year :
2023

Abstract

Stroke, categorized under cardiovascular and circulatory diseases, is considered the second foremost cause of death worldwide, causing approximately 11% of deaths annually. Stroke diagnosis using a Computed Tomography (CT) scan is considered ideal for identifying whether the stroke is hemorrhagic or ischemic. However, most methods for stroke classification are based on a single slice-level prediction mechanism, meaning that the most imperative CT slice has to be manually selected by the radiologist from the original CT volume. This paper proposes an integration of Convolutional Neural Network (CNN), Vision Transformers (ViT), and AutoML to obtain slice-level predictions as well as patient-wise prediction results. While the CNN with inductive bias captures local features, the transformer captures long-range dependencies between sequences. This collaborative local-global feature extractor improves upon the slice-wise predictions of the CT volume. We propose stroke-specific feature extraction from each slice-wise prediction to obtain the patient-wise prediction using AutoML. While the slice-wise predictions helps the radiologist to verify close and corner cases, the patient-wise predictions makes the outcome clinically relevant and closer to real-world scenario. The proposed architecture has achieved an accuracy of 87% for single slice-level prediction and an accuracy of 92% for patient-wise prediction. For comparative analysis of slice-level predictions, standalone architectures of VGG-16, VGG-19, ResNet50, and ViT were considered. The proposed architecture has outperformed the standalone architectures by 9% in terms of accuracy. For patient-wise predictions, AutoML considers 13 different ML algorithms, of which 3 achieve an accuracy of more than 90%. The proposed architecture helps in reducing the manual effort by the radiologist to manually select the most imperative CT from the original CT volume and shows improvement over other standalone architectures for classification tasks. The proposed architecture can be generalized for volumetric scans aiding in the patient diagnosis of head and neck, lungs, diseases of hepatobiliary tract, genitourinary diseases, women's imaging including breast cancer and various musculoskeletal diseases. Code for proposed stroke-specific feature extraction with the pre-trained weights of the trained model is available at: https://github.com/rishiraj-cs/StrokeViT_With_AutoML. [Display omitted] • Most methods for stroke classification are based on slice-level prediction mechanism. • An integration of CNN and ViT is proposed for slice-level prediction. • For patient-wise predictions, stroke-specific feature extraction is proposed. • AutoML is trained on the proposed domain-specific features extracted. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09521976
Volume :
119
Database :
Academic Search Index
Journal :
Engineering Applications of Artificial Intelligence
Publication Type :
Academic Journal
Accession number :
161601103
Full Text :
https://doi.org/10.1016/j.engappai.2022.105772