Back to Search Start Over

Femtosecond laser structuring in the fabrication of periodic nanostructure on titanium for enhanced photoelectrochemical dopamine sensing performance.

Authors :
Chang, Han-Wei
Chen, Chien-Lin
Jhu, Siou-Jhun
Lin, Guan-Wen
Cheng, Chung-Wei
Tsai, Yu-Chen
Source :
Microchemical Journal. Apr2023, Vol. 187, pN.PAG-N.PAG. 1p.
Publication Year :
2023

Abstract

[Display omitted] • LIPSS upon titanium through femtosecond laser structuring. • LIPSS upon titanium own the significant chemical and surface characteristics. • LIPSS upon titanium efficiently enhance photoelectrochemical dopamine sensing. • Polarization-shaped femtosecond laser affect the photoelectrochemical sensing. Femtosecond laser structuring in the fabrication of periodic nanostructure on titanium for enhanced photoelectrochemical dopamine sensing performance was reported. The formation of laser induced periodic surface structures (LIPSS) upon titanium foil depended on the polarization of the femtosecond laser beam. When linearly and radially polarized femtosecond laser beam interacted with titanium foil, LIPSS were generated on titanium surface and further used for the fabrication of electrode material in photoelectrochemical dopamine sensing. Field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and UV–vis absorption spectra were performed to study the surface characteristics of the laser treated titanium foil. The results revealed that low spatial frequency LIPSS (LSFL) formation occurred at both cases of the linearly and radially polarized laser treated titanium foil with a period of about 350 and 250 nm and owned the significant surface chemical and structural modification (abundant Ti4+ state and hydroxyl functional group), especially in term of radially polarized laser treated titanium foil. The radially polarized laser treated titanium foil owning optimal surface structural modification contributed multiple catalytically active sites and made the outstanding photoelectrochemical performance of dopamine sensing. It was concluded that femtosecond laser surface structuring made it possible to modify the surface characteristics of objects for future construction of sensing platforms. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
0026265X
Volume :
187
Database :
Academic Search Index
Journal :
Microchemical Journal
Publication Type :
Academic Journal
Accession number :
161694635
Full Text :
https://doi.org/10.1016/j.microc.2023.108423