Back to Search
Start Over
Sustainable Production of Biodiesel from Novel Non-Edible Oil Seeds (Descurainia sophia L.) via Green Nano CeO 2 Catalyst.
- Source :
-
Energies (19961073) . Feb2023, Vol. 16 Issue 3, p1534. 26p. - Publication Year :
- 2023
-
Abstract
- The current study focuses on the synthesis of Cerium oxide (CeO2) nanocatalyst via Tragacanth Gum (TG) using the wet impregnation method and its application for sustainable biodiesel production from a novel, non-edible Descurainia sophia (L.) Webb ex Prantl seed oil. The D. sophia seed oil has higher oil content (36 wt%) and free fatty acid (FFA) value (0.6 mg KOH/g). Innovative analytical methods, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy, were used to characterize the newly synthesized, environmentally friendly, and recyclable CeO2-TG phytonanocatalyst (FT-IR). The results show that the CeO2-TG phytonanocatalyst was 22 nm in diameter with a spherical shape outer morphology, while the inner structure was hexagonal. Due to low FFA content, the D. sophia seed oil was pretreated and transesterified via a single step. Using varying parameters, the optimized process variables were determined via Response Surface Methodology (RSM). The optimum process values were 8:1 methanol to oil molar ratio, 0.3 wt% catalyst concentration, 90 °C temperature, and reaction time of 210 min with 98% biodiesel yield. The recently created phytonanocatalyst was reliable and effective, with three times reusability in the transesterification reaction. Thin layer chromatography (TLC), FT-IR, gas chromatography–mass spectroscopy (GCMS), and Nuclear magnetic resonance (NMR) analyses were used to characterize the synthesized biodiesel. Physico-chemical properties of D. sophia biodiesel, i.e., Kinematic viscosity (4.23 mm2/s), density (0.800 kg/m3), pour point (−7 °C), cloud point (−12 °C), and flash point (73.5 °C) agree well with international biodiesel standards (ASTM-6751, 951), (EU-14214), and China (GB/T 20828) standards. The results show that the synthesized nanocatalyst demonstrated remarkable stability, indicating a bright future for industrial biodiesel production from low-cost feedstock. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 19961073
- Volume :
- 16
- Issue :
- 3
- Database :
- Academic Search Index
- Journal :
- Energies (19961073)
- Publication Type :
- Academic Journal
- Accession number :
- 161820482
- Full Text :
- https://doi.org/10.3390/en16031534