Back to Search Start Over

Two Novel Schiff Base Manganese Complexes as Bifunctional Electrocatalysts for CO 2 Reduction and Water Oxidation.

Authors :
Zhao, Xin
Li, Jingjing
Jian, Hengxin
Lu, Mengyu
Wang, Mei
Source :
Molecules. Feb2023, Vol. 28 Issue 3, p1074. 15p.
Publication Year :
2023

Abstract

One mononuclear Mn(III) complex [MnIIIL(H2O)(MeCN)](ClO4) (1) and one hetero-binuclear complex [(CuIILMnII(H2O)3)(CuIIL)2](ClO4)2·CH3OH (2) have been synthesized with the Schiff base ligand (H2L = N,N′-bis(3-methoxysalicylidene)-1,2-phenylenediamine). Single crystal X-ray structural analysis manifests that the Mn(III) ion in 1 has an octahedral coordination structure, whereas the Mn(II) ion in 2 possesses a trigonal bipyramidal configuration and the Cu(II) ion in 2 is four-coordinated with a square-planar geometry. Electrochimerical catalytic investigation demonstrates that the two complexes can electrochemically catalyze water oxidation and CO2 reduction simultaneously. The coordination environments of the Mn(III), Mn(II), and Cu(II) ions in 1 and 2 were provided by the Schiff base ligand (L) and labile solvent molecules. The coordinately unsaturated environment of the Cu(II) center in 2 can perfectly facilitate the catalytic performance of 2. Complexes 1 and 2 display that the over potentials for water oxidation are 728 mV and 216 mV, faradaic efficiencies (FEs) are 88% and 92%, respectively, as well as the turnover frequency (TOF) values for the catalytic reduction of CO2 to CO are 0.38 s−1 at −1.65 V and 15.97 s−1 at −1.60 V, respectively. Complex 2 shows much better catalytic performance for both water oxidation and CO2 reduction than that of complex 1, which could be owing to a structural reason which is attributed to the synergistic catalytic action of the neighboring Mn(III) and Cu(II) active sites in 2. Complexes 1 and 2 are the first two compounds coordinated with Schiff base ligand for both water oxidation and CO2 reduction. The finding in this work can offer significant inspiration for the future development of electrocatalysis in this area. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14203049
Volume :
28
Issue :
3
Database :
Academic Search Index
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
161857738
Full Text :
https://doi.org/10.3390/molecules28031074