Back to Search Start Over

New Anti-Prelog Stereospecific Whole-Cell Biocatalyst for Asymmetric Reduction of Prochiral Ketones.

Authors :
Wang, Min-Yu
Cai, Shun-Ju
Lin, Jia-Chun
Ji, Xiao-Jun
Zhang, Zhi-Gang
Source :
Molecules. Feb2023, Vol. 28 Issue 3, p1422. 14p.
Publication Year :
2023

Abstract

The biocatalytic asymmetric reduction of prochiral ketones for the production of enantiopure alcohols is highly desirable due to its inherent advantages over chemical methods. In this study, a new bacterial strain capable of transforming ketones to corresponding alcohols with high activity and excellent enantioselectivity was discovered in a soil sample. The strain was subsequently identified as Bacillus cereus TQ-2 based on its physiological characteristics and 16S rDNA sequence analysis. Under optimized reaction conditions, the resting cells of B. cereus TQ-2 converted acetophenone to enantioenriched (R)-1-phenylethanol with 99% enantiometric excess following anti-Prelog's rule, which is scarce in biocatalytic ketone reduction. The optimum temperature for the cells was 30 °C, and considerable catalytic activity was observed over a broad pH range from 5.0 to 9.0. The cells showed enhanced catalytic activity in the presence of 15% (v/v) glycerol as a co-substrate. The catalytic activity can also be substantially improved by adding Ca2+ or K+ ions. Moreover, the B. cereus TQ-2 cell was highly active in reducing several structurally diverse ketones and aldehydes to form corresponding alcohols with good to excellent conversion. Our study provides a versatile whole-cell biocatalyst that can be used in the asymmetric reduction of ketones for the production of chiral alcohol, thereby expanding the biocatalytic toolbox for potential practical applications. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14203049
Volume :
28
Issue :
3
Database :
Academic Search Index
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
161858086
Full Text :
https://doi.org/10.3390/molecules28031422