Back to Search Start Over

A Spectral–Spatial Method for Mapping Fire Severity Using Morphological Attribute Profiles.

Authors :
Ren, Xiaoyang
Yu, Xin
Wang, Yi
Source :
Remote Sensing. Feb2023, Vol. 15 Issue 3, p699. 26p.
Publication Year :
2023

Abstract

Fast and accurate fire severity mapping can provide an essential resource for fire management and studying fire-related ecological and climate change. Currently, mainstream fire severity mapping approaches are based only on pixel-wise spectral features. However, the landscape pattern of fire severity originates from variations in spatial dependence, which should be described by spatial features combined with spectral features. In this paper, we propose a morphological attribute profiles-based spectral–spatial approach, named Burn Attribute Profiles (BAP), to improve fire severity classification and mapping accuracy. Specifically, the BAP method uses principal component transformation and attributes with automatically determined thresholds to extract spatial features, which are integrated with spectral features to form spectral–spatial features for fire severity. We systematically tested and compared the BAP-based spectral–spatial features and spectral index features in the extremely randomized trees machine learning framework. Sentinel-2 imagery was used for seven fires in the Mediterranean region, while Landsat-8 imagery was used for another seven fires in the northwestern continental United States region. The results showed that, except for 2 fires (overall accuracy (OA) for EMSR213_P: 59.6%, EL: 59.5%), BAP performed well for the other 12 fires (OA for the 2 fires: 60–70%, 6 fires: 70–80%, 4 fires: >80%). Furthermore, compared with the spectral indices-based method, the BAP method showed OA improvement in all 14 fires (OA improvement in Mediterranean: 0.2–14.3%, US: 4.7–12.9%). Recall and Precision were also improved for each fire severity level in most fire events. Moreover, the BAP method improved the "salt-and-pepper" phenomenon in the homogeneous area, where the results are visually closest to the reference data. The above results suggest that the spectral–spatial method based on morphological attribute profiles can map fire severity more accurately. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
3
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
161870794
Full Text :
https://doi.org/10.3390/rs15030699