Back to Search Start Over

Colorimetric and photothermal dual-mode lateral flow immunoassay based on Au-Fe3O4 multifunctional nanoparticles for detection of Salmonella typhimurium.

Authors :
Wen, Cong-Ying
Zhao, Ling-Jin
Wang, Ying
Wang, Kun
Li, Hui-Wen
Li, Xiang
Zi, Min
Zeng, Jing-Bin
Source :
Microchimica Acta. Feb2023, Vol. 190 Issue 2, p1-10. 10p.
Publication Year :
2023

Abstract

Au-Fe3O4 multifunctional nanoparticles (NPs) were synthesized and integrated with lateral flow immunoassay (LFIA) for dual-mode detection of Salmonella typhimurium. The Au-Fe3O4 NPs not only combined excellent local surface plasmon resonance characteristics and superparamagnetic properties, but also exhibited good photothermal effect. In the detection, antibody-conjugated Au-Fe3O4 NPs first captured S. typhimurium from complex matrix, which was then loaded on the LFIA strip and trapped by the T-line. By observing the color bands with the naked eyes, qualitative detection was performed free of instrument. By measuring the photothermal signal, quantification was achieved with a portable infrared thermal camera. The introduction of magnetic separation achieved the enrichment and purification of target bacteria, thus enhancing the detection sensitivity and reducing interference. This dual-mode LFIA achieved a visual detection limit of 5 × 105 CFU/mL and a photothermal detection limit of 5 × 104 CFU/mL. Compared with traditional Au-based LFIA, this dual-mode LFIA increased the detection sensitivity by 2 orders of magnitude and could be directly applied to unprocessed milk sample. Besides, this dual-mode LFIA showed good reproducibility and specificity. The intra-assay and inter-assay variation coefficients were 3.0% and 7.9%, and with this dual-mode LFIA, other bacteria hardly produced distinguishable signals. Thus, the Au-Fe3O4 NPs-based LFIA has potential to increase the efficiency of pandemic prevention and control. Au-Fe3O4 nanoparticle proved to be a promising alternative reporter for LFIA, achieving multifunctions: target purification, target enrichment, visual qualitation, and instrumental quantification, which improved the limitations of traditional LFIA. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00263672
Volume :
190
Issue :
2
Database :
Academic Search Index
Journal :
Microchimica Acta
Publication Type :
Academic Journal
Accession number :
162012780
Full Text :
https://doi.org/10.1007/s00604-023-05645-x