Back to Search Start Over

The use of plate-type electric force field for the explicit simulations of electrochemical CO dimerization on Cu(1 1 1) surface.

Authors :
Liao, Chen-Cheng
Tsai, Tsung-Han
Chang, Chun-Chih
Tsai, Ming-Kang
Source :
Chemical Physics. Apr2023, Vol. 568, pN.PAG-N.PAG. 1p.
Publication Year :
2023

Abstract

[Display omitted] A systematic assessment is demonstrated for the explicitly modeling electrochemical CO dimerization on Cu(1 1 1) surface. The solvation configurations were sampling at room temperature with the presence of adsorbates and Cu surface. The energetics and work functions along the CO dimerization pathway were characterized with the inclusion of plate-type electric force fields. The activation barriers and reactions energies of CO dimerization process appear to be independent of the external electrostatic perturbations around 0.95 eV and 0.35 eV, respectively, with using the constant-potential correction. This observation based upon the current explicit simulations reaffirms the characteristics of CO dimerization as a thermal-driven process. The use of electric force fields ranging from + 0.2 V/Å to −0.2 V/Å could introduce the effective electrochemical potential from + 1.766 to −0.565 V vs standard hydrogen electrode at pH = 7 condition. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
03010104
Volume :
568
Database :
Academic Search Index
Journal :
Chemical Physics
Publication Type :
Academic Journal
Accession number :
162108409
Full Text :
https://doi.org/10.1016/j.chemphys.2023.111821