Back to Search Start Over

Mathematical Framework for Mixed Reservation- and Priority-Based Traffic Coexistence in 5G NR Systems.

Authors :
Ivanova, Daria
Adou, Yves
Markova, Ekaterina
Gaidamaka, Yuliya
Samouylov, Konstantin
Source :
Mathematics (2227-7390). Feb2023, Vol. 11 Issue 4, p1046. 15p.
Publication Year :
2023

Abstract

Fifth-generation (5G) New Radio (NR) systems are expected to support multiple traffic classes including enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC) at the same air interface. This functionality is assumed to be implemented by utilizing the network slicing concept. According to the 3rd Generation Partnership Project (3GPP), the efficient support of this feature requires statistical multiplexing and, at the same time, traffic isolation between slices. In this paper, we formulate and solve a mathematical model for a class of Radio Access Network (RAN) slicing algorithms that simultaneously include resource reservation and a priority-based service discipline allowing us to incur fine granularity in the service processes of different traffic aggregates. The system is based on a queueing model and allows parametrization by accounting for the specifics of wireless channel impairments. As metrics of interest, we utilize K-class session drop probability, K-class session pre-emption probability, and system resource utilization. To showcase the capabilities of the model, we also compare performance guarantees provided for URLLC, eMBB, and mMTC traffic when multiplexed over the same NR radio interface. Our results demonstrate that the performance trade-off is dictated by the offered traffic load of the highest priority sessions: (i) when it is small, mixed reservation/priority scheme outperforms the full reservation mechanism; (ii) for overloaded conditions, full reservations provides better traffic isolation. The mixed strategy is beneficial to traffic aggregates with short-lived lightweight sessions, such as URLLC and mMTC, while the reservation only scheme works better for elastic eMBB traffic. The most important feature is that the mixed strategy allows resource utilization to be improved up to 95%, which is 10–15% higher compared to the reservation-only scheme while still providing isolation between traffic types. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22277390
Volume :
11
Issue :
4
Database :
Academic Search Index
Journal :
Mathematics (2227-7390)
Publication Type :
Academic Journal
Accession number :
162136826
Full Text :
https://doi.org/10.3390/math11041046