Back to Search Start Over

SKI-1/S1P Facilitates SARS-CoV-2 Spike Induced Cell-to-Cell Fusion via Activation of SREBP-2 and Metalloproteases, Whereas PCSK9 Enhances the Degradation of ACE2.

Authors :
Essalmani, Rachid
Andréo, Ursula
Evagelidis, Alexandra
Le Dévéhat, Maïlys
Pereira Ramos, Oscar Henrique
Fruchart Gaillard, Carole
Susan-Resiga, Delia
Cohen, Éric A.
Seidah, Nabil G.
Source :
Viruses (1999-4915). Feb2023, Vol. 15 Issue 2, p360. 23p.
Publication Year :
2023

Abstract

Proprotein convertases activate various envelope glycoproteins and participate in cellular entry of many viruses. We recently showed that the convertase furin is critical for the infectivity of SARS-CoV-2, which requires cleavage of its spike protein (S) at two sites: S1/S2 and S2′. This study investigates the implication of the two cholesterol-regulating convertases SKI-1 and PCSK9 in SARS-CoV-2 entry. The assays used were cell-to-cell fusion in HeLa cells and pseudoparticle entry into Calu-3 cells. SKI-1 increased cell-to-cell fusion by enhancing the activation of SREBP-2, whereas PCSK9 reduced cell-to-cell fusion by promoting the cellular degradation of ACE2. SKI-1 activity led to enhanced S2′ formation, which was attributed to increased metalloprotease activity as a response to enhanced cholesterol levels via activated SREBP-2. However, high metalloprotease activity resulted in the shedding of S2′ into a new C-terminal fragment (S2″), leading to reduced cell-to-cell fusion. Indeed, S-mutants that increase S2″ formation abolished S2′ and cell-to-cell fusion, as well as pseudoparticle entry, indicating that the formation of S2″ prevents SARS-CoV-2 cell-to-cell fusion and entry. We next demonstrated that PCSK9 enhanced the cellular degradation of ACE2, thereby reducing cell-to-cell fusion. However, different from the LDLR, a canonical target of PCSK9, the C-terminal CHRD domain of PCSK9 is dispensable for the PCSK9-induced degradation of ACE2. Molecular modeling suggested the binding of ACE2 to the Pro/Catalytic domains of mature PCSK9. Thus, both cholesterol-regulating convertases SKI-1 and PCSK9 can modulate SARS-CoV-2 entry via two independent mechanisms. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19994915
Volume :
15
Issue :
2
Database :
Academic Search Index
Journal :
Viruses (1999-4915)
Publication Type :
Academic Journal
Accession number :
162164695
Full Text :
https://doi.org/10.3390/v15020360