Back to Search Start Over

Slater transition methods for core-level electron binding energies.

Authors :
Jana, Subrata
Herbert, John M.
Source :
Journal of Chemical Physics. 3/7/2023, Vol. 158 Issue 9, p1-14. 14p.
Publication Year :
2023

Abstract

Methods for computing core-level ionization energies using self-consistent field (SCF) calculations are evaluated and benchmarked. These include a "full core hole" (or "ΔSCF") approach that fully accounts for orbital relaxation upon ionization, but also methods based on Slater's transition concept in which the binding energy is estimated from an orbital energy level that is obtained from a fractional-occupancy SCF calculation. A generalization that uses two different fractional-occupancy SCF calculations is also considered. The best of the Slater-type methods afford mean errors of 0.3–0.4 eV with respect to experiment for a dataset of K-shell ionization energies, a level of accuracy that is competitive with more expensive many-body techniques. An empirical shifting procedure with one adjustable parameter reduces the average error below 0.2 eV. This shifted Slater transition method is a simple and practical way to compute core-level binding energies using only initial-state Kohn–Sham eigenvalues. It requires no more computational effort than ΔSCF and may be especially useful for simulating transient x-ray experiments where core-level spectroscopy is used to probe an excited electronic state, for which the ΔSCF approach requires a tedious state-by-state calculation of the spectrum. As an example, we use Slater-type methods to model x-ray emission spectroscopy. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
158
Issue :
9
Database :
Academic Search Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
162291259
Full Text :
https://doi.org/10.1063/5.0134459