Back to Search
Start Over
Evaluation of the High-Resolution MuSyQ LAI Product over Heterogeneous Land Surfaces.
- Source :
-
Remote Sensing . Mar2023, Vol. 15 Issue 5, p1238. 18p. - Publication Year :
- 2023
-
Abstract
- In recent years, the retrieval and validation of remotely-sensed leaf area index (LAI) products over complex land surfaces have received much attention due to the high-precision land surface model simulations and applications in global climate change. However, most of these related researches mainly focus on coarse resolution products. This is because few products have been specifically designed for solving the problems derived from complex land surfaces in mountain areas until now. MuSyQ LAI is a new product derived from Gaofen-1 (GF-1) satellite data. This product is characterized with a temporal resolution of 10 days and a spatial resolution of 16 m. As is well known, high-resolution products have less uncertainties because of the homogeneities of sub-pixel. Therefore, to evaluate the precision and uncertainty of MuSyQ LAI, an up-scaling strategy was employed here to validate MuSyQ LAI for three mountain regions in Southwest China. The validation strategy can be divided into three parts. First, a regression model was built by in situ LAI measured by LAI-2200 and the normalized difference vegetation index (NDVI) from unmanned aerial vehicle (UAV) images to obtain a 0.5 m resolution LAI map. Second, an up-scaled LAI map with a spatial resolution consistent with MuSyQ LAI was calculated by the pixel-averaging method from the UAV-based LAI map. Third, the MuSyQ LAI was validated by the up-scaled UAV-based LAI in pixel scale. Simultaneously, the sources of uncertainty were analyzed and compared from the view of data source, retrieval model, and scale effects. The results suggested that MuSyQ LAI in the study areas are significantly underestimated by 53.69% due to the complex terrain and heterogeneous land cover. There are three main reasons for the underestimation. The differences between GF-1 reflectance and UAV-based reflectance employed to estimate LAI are the largest factors for the validation results, even accounting for 61.47% of the total bias. Subsequently, the scale effects led to about 28.44% bias. Last but not least, the models employed to retrieve LAI contributed merely 10.09% uncertainties to the total bias. In conclusion, the accuracy of MuSyQ LAI still has a large space to be improved from the view of reflectance over complex terrain. This study is quite important for applications of MuSyQ LAI products and also provides a reference for the improvement and application of other high-resolution remotely sensed LAI products. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 20724292
- Volume :
- 15
- Issue :
- 5
- Database :
- Academic Search Index
- Journal :
- Remote Sensing
- Publication Type :
- Academic Journal
- Accession number :
- 162384662
- Full Text :
- https://doi.org/10.3390/rs15051238