Back to Search
Start Over
Ill-posedness of the hyperbolic Keller-Segel model in Besov spaces.
- Source :
-
Zeitschrift für Angewandte Mathematik und Physik (ZAMP) . Apr2023, Vol. 74 Issue 2, p1-10. 10p. - Publication Year :
- 2023
-
Abstract
- In this paper, we give a new construction of u 0 ∈ B p , ∞ σ such that the corresponding solution to the hyperbolic Keller-Segel model starting from u 0 is discontinuous at t = 0 in the metric of B p , ∞ σ (R d) with d ≥ 1 and 1 ≤ p ≤ ∞ , which implies the ill-posedness for this equation in B p , ∞ σ . Our result generalizes the recent work in Zhang et al. (J Differ Equ 334:451-489, 2022) where the case d = 1 and p = 2 was considered. [ABSTRACT FROM AUTHOR]
- Subjects :
- *BESOV spaces
Subjects
Details
- Language :
- English
- ISSN :
- 00442275
- Volume :
- 74
- Issue :
- 2
- Database :
- Academic Search Index
- Journal :
- Zeitschrift für Angewandte Mathematik und Physik (ZAMP)
- Publication Type :
- Academic Journal
- Accession number :
- 162587781
- Full Text :
- https://doi.org/10.1007/s00033-023-01952-8