Back to Search Start Over

Ill-posedness of the hyperbolic Keller-Segel model in Besov spaces.

Authors :
Fei, Xiang
Yu, Yanghai
Fei, Mingwen
Source :
Zeitschrift für Angewandte Mathematik und Physik (ZAMP). Apr2023, Vol. 74 Issue 2, p1-10. 10p.
Publication Year :
2023

Abstract

In this paper, we give a new construction of u 0 ∈ B p , ∞ σ such that the corresponding solution to the hyperbolic Keller-Segel model starting from u 0 is discontinuous at t = 0 in the metric of B p , ∞ σ (R d) with d ≥ 1 and 1 ≤ p ≤ ∞ , which implies the ill-posedness for this equation in B p , ∞ σ . Our result generalizes the recent work in Zhang et al. (J Differ Equ 334:451-489, 2022) where the case d = 1 and p = 2 was considered. [ABSTRACT FROM AUTHOR]

Subjects

Subjects :
*BESOV spaces

Details

Language :
English
ISSN :
00442275
Volume :
74
Issue :
2
Database :
Academic Search Index
Journal :
Zeitschrift für Angewandte Mathematik und Physik (ZAMP)
Publication Type :
Academic Journal
Accession number :
162587781
Full Text :
https://doi.org/10.1007/s00033-023-01952-8