Back to Search Start Over

Improving the prediction of glassy dynamics by pinpointing the local cage.

Authors :
Alkemade, Rinske M.
Smallenburg, Frank
Filion, Laura
Source :
Journal of Chemical Physics. 4/7/2023, Vol. 158 Issue 13, p1-8. 8p.
Publication Year :
2023

Abstract

The relationship between structure and dynamics in glassy fluids remains an intriguing open question. Recent work has shown impressive advances in our ability to predict local dynamics using structural features, most notably due to the use of advanced machine learning techniques. Here, we explore whether a simple linear regression algorithm combined with intelligently chosen structural order parameters can reach the accuracy of the current, most advanced machine learning approaches for predicting dynamic propensity. To achieve this, we introduce a method to pinpoint the cage state of the initial configuration—i.e., the configuration consisting of the average particle positions when particle rearrangement is forbidden. We find that, in comparison to both the initial state and the inherent state, the structure of the cage state is highly predictive of the long-time dynamics of the system. Moreover, by combining the cage state information with the initial state, we are able to predict dynamic propensities with unprecedentedly high accuracy over a broad regime of time scales, including the caging regime. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219606
Volume :
158
Issue :
13
Database :
Academic Search Index
Journal :
Journal of Chemical Physics
Publication Type :
Academic Journal
Accession number :
162982329
Full Text :
https://doi.org/10.1063/5.0144822