Back to Search Start Over

Sequence-Dependent Interaction of the Human Papillomavirus E2 Protein with the DNA Elements on Its DNA Replication Origin.

Authors :
Yilmaz, Gulden
Biswas-Fiss, Esther E.
Biswas, Subhasis B.
Source :
International Journal of Molecular Sciences. Apr2023, Vol. 24 Issue 7, p6555. 18p.
Publication Year :
2023

Abstract

The human papillomavirus (HPV) E2 protein is essential for regulating the initiation of viral DNA replication as well as the regulation of transcription of certain HPV-encoded genes. Its ability to recognize and bind to its four recognition sequences in the viral origin is a key step in the initiation of HPV DNA replication. Thus, understanding the mechanism of DNA binding by E2 protein and the unique roles played by individual DNA sequence elements of the replication origin is essential. We have purified the recombinant full-length HPV type 11 E2 protein. Quantitative DNA binding analysis indicated E2 protein bound all four DNA binding sites with reasonably high affinities but with distinct preferences. It bound its cognate binding sites 1, 2, and 4 with higher affinities, but bound binding site 3 with lower affinity. Analysis of binding to these sites unraveled multiple sequence elements that appeared to influence E2 binding affinity and target discrimination, including the sequence of spacer region, flanking sequences, and proximity of E2 binding sites. Thermodynamic analysis indicated hydrophobic interaction in the protein-DNA complex formation. Our studies indicate a large multi-protein complex formation on the HPV-origin DNA, likely due to reasonably high binding affinities as well as intrinsic oligomerization propensity of E2 dimers. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
24
Issue :
7
Database :
Academic Search Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
163039864
Full Text :
https://doi.org/10.3390/ijms24076555