Back to Search Start Over

Precise Orbit Determination and Accuracy Analysis for BDS-3 Satellites Using SLR Observations.

Authors :
An, Zicong
Shao, Kai
Gu, Defeng
Wei, Chunbo
Xu, Zheyu
Tong, Lisheng
Zhu, Jubo
Wang, Jian
Liu, Daoping
Source :
Remote Sensing. Apr2023, Vol. 15 Issue 7, p1833. 17p.
Publication Year :
2023

Abstract

Satellite laser ranging (SLR) is the space geodetic technique with the highest degree of range, measuring precision and distances right down to the millimeter level. Thanks to the improvement of SLR station layouts and the advance of SLR technology, in recent years, more research has been conducted to determine Global Navigation Satellite System (GNSS) satellite orbits using SLR data. The primary goal of this contribution is to investigate the accuracy of BeiDou Navigation-3 (BDS-3) Satellite precise orbit determination (POD) using solely SLR data, as well as explore the impact of various factors on that accuracy. Firstly, we used actual SLR data to make the POD for BDS-3 satellites, and the POD accuracy was positively connected with the orbital arc lengths. The 9-day median root mean square (RMS) in radial (R), along-track (T), and cross-track (N) directions were estimated at 4.7–8.2, 22.1–35.2, and 27.4–43.8 cm, respectively, for comparison with WUM precise orbits. Then, we explored the impact of SLR observations and stations on POD accuracy. For 9-day orbital arc lengths, five station or 20 observation arcs may offer an orbit with a 1 m precision. Six to eight stations or 30–35 observation arcs allow an improved orbit accuracy up to approximately 0.5 m. Furthermore, we examined how measurement errors and orbit modeling errors affect the SLR-only POD accuracy using simulated SLR data. For orbital arc lengths of 9 days, each cm of random error leads to a 9.3–11.0 cm decrease in orbit accuracy. The accuracy of an orbit is reduced by 10.1–15.0 cm for every 1 cm of systematic error. Moreover, for solar radiation pressure (SRP) errors, the effect of POD accuracy is 20.5–45.1 cm, respectively. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
7
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
163040490
Full Text :
https://doi.org/10.3390/rs15071833