Back to Search
Start Over
Community Detection in Multilayer Networks Based on Matrix Factorization and Spectral Embedding Method.
- Source :
-
Mathematics (2227-7390) . Apr2023, Vol. 11 Issue 7, p1573. 19p. - Publication Year :
- 2023
-
Abstract
- Community detection remains a challenging research hotspot in network analysis. With the complexity of the network data structures increasing, multilayer networks, in which entities interact through multiple types of connections, prove to be effective in describing complex networks. The layers in a multilayer network may not share a common community structure. In this paper, we propose a joint method based on matrix factorization and spectral embedding to recover the groups not only for the layers but also for nodes. Specifically, the layers are grouped via the matrix factorization method with layer similarity-based regularization in the perspective of a mixture multilayer stochastic block model, and then the node communities within a layer group are revealed by clustering a combination of the spectral embedding derived from the adjacency matrices and the shared approximation matrix. Numerical studies show that the proposed method achieves competitive clustering results as the number of nodes and/or number of layers vary, together with different topologies of network layers. Additionally, we apply the proposed method on two real-world multilayer networks and obtain interesting findings which again highlight the effectiveness of our method. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 22277390
- Volume :
- 11
- Issue :
- 7
- Database :
- Academic Search Index
- Journal :
- Mathematics (2227-7390)
- Publication Type :
- Academic Journal
- Accession number :
- 163042923
- Full Text :
- https://doi.org/10.3390/math11071573