Back to Search Start Over

Inverse CO2/C2H2 Separation with MFU‐4 and Selectivity Reversal via Postsynthetic Ligand Exchange.

Authors :
Liu, Qiao
Cho, Sung Gu
Hilliard, Jordon
Wang, Ting‐Yuan
Chien, Szu‐Chia
Lin, Li‐Chiang
Co, Anne C.
Wade, Casey R.
Source :
Angewandte Chemie. 4/24/2023, Vol. 135 Issue 18, p1-7. 7p.
Publication Year :
2023

Abstract

Although many porous materials, including metal–organic frameworks (MOFs), have been reported to selectively adsorb C2H2 in C2H2/CO2 separation processes, CO2‐selective sorbents are much less common. Here, we report the remarkable performance of MFU‐4 (Zn5Cl4(bbta)3, bbta=benzo‐1,2,4,5‐bistriazolate) toward inverse CO2/C2H2 separation. The MOF facilitates kinetic separation of CO2 from C2H2, enabling the generation of high purity C2H2 (>98 %) with good productivity in dynamic breakthrough experiments. Adsorption kinetics measurements and computational studies show C2H2 is excluded from MFU‐4 by narrow pore windows formed by Zn−Cl groups. Postsynthetic F−/Cl− ligand exchange was used to synthesize an analogue (MFU‐4‐F) with expanded pore apertures, resulting in equilibrium C2H2/CO2 separation with reversed selectivity compared to MFU‐4. MFU‐4‐F also exhibits a remarkably high C2H2 adsorption capacity (6.7 mmol g−1), allowing fuel grade C2H2 (98 % purity) to be harvested from C2H2/CO2 mixtures by room temperature desorption. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00448249
Volume :
135
Issue :
18
Database :
Academic Search Index
Journal :
Angewandte Chemie
Publication Type :
Academic Journal
Accession number :
163112991
Full Text :
https://doi.org/10.1002/ange.202218854