Back to Search Start Over

胶原 / 丝素蛋白支架联合人脐带源间充质干细胞干预犬创伤性脑损伤.

Authors :
王梓琪
李晓寅
江继鹏
宋 震
李正超
陈淑莲
陈旭义
Source :
Chinese Journal of Tissue Engineering Research / Zhongguo Zuzhi Gongcheng Yanjiu. 12/8/2023, Vol. 27 Issue 34, p5483-5490. 8p.
Publication Year :
2023

Abstract

BACKGROUND: So far, the subversive treatment of traumatic brain injury is very limited. The combination of medicine and engineering has brought new prospects for the repair and regeneration of central nervous system nerves. OBJECTIVE: To investigate the therapeutic effect of collagen/silk fibroin scaffold that can carry seed cells and is safe and porous, combined with human umbilical cord-derived mesenchymal stem cells on traumatic brain injury in beagle dogs. METHODS: (1) Passage 3 human umbilical cord-derived mesenchymal stem cells were inoculated onto collagen/silk fibroin scaffold. The growth of human umbilical cord-derived mesenchymal stem cells was observed by inverted phase contrast microscope, scanning electron microscope, immunofluorescence staining and hematoxylin-eosin staining. (2) Twenty-four beagle dogs were randomly divided into four groups. In the trauma group, only the traumatic brain injury model was established without other treatment. In the stem cell group, human umbilical cord-derived mesenchymal stem cells were transplanted after model establishment. In the scaffold group, the collagen/silk fibroin scaffold was transplanted after model establishment. In the combination group, human umbilical cord-derived mesenchymal stem cells and collagen/silk fibroin scaffold were transplanted after model establishment. The grafts were all transplanted locally in the injured area. At 1 day, 1, 4, 8, 12, 16, 20 and 24 weeks after operation, a modified Glasgow Coma Scale was performed respectively. Motor-evoked potentials were detected at 1, 3 and 6 months after operation. At 6 months after operation, magnetic resonance imaging and in situ hybridization of brain tissue repair RNA were performed to evaluate the recovery of traumatic brain injury. RESULTS AND CONCLUSION: Human umbilical cord-derived mesenchymal stem cells attached to collagen/silk fibroin scaffold surface grew well and extended many pseudopods. Modified Glasgow Coma Scale score of the combination group was significantly higher than that of the trauma group, stem cell group and scaffold group at 1, 4, 8, 12, 16, 20 and 24 weeks after operation (P < 0.05). The latency and amplitude of motor-evoked potential of the combination group at 1, 3 and 6 months were significantly better than those of the trauma group under different constant pressure stimuli (P < 0.01). Diffusion tensor imaging of magnetic resonance scanning showed that the integrity of the corticospinal tract in the combination group was better than that in the trauma, stem cell and scaffold groups, and a new corticospinal tract could be seen on the injured side. The results of in situ hybridization of brain tissue repair RNA demonstrated that the expression levels of synaptophysin, microtubule-associated protein 2, von Willebrand factor, neurofilament protein and MBP in the combination group were more than those in the trauma, stem cell and scaffold groups. It is indicated that human umbilical cord-derived mesenchymal stem cells combined with collagen/silk fibroin scaffold play an active role in corticospinal tract regeneration, motor function recovery, angiogenesis and neurite growth in dogs with traumatic brain injury. [ABSTRACT FROM AUTHOR]

Details

Language :
Chinese
ISSN :
20954344
Volume :
27
Issue :
34
Database :
Academic Search Index
Journal :
Chinese Journal of Tissue Engineering Research / Zhongguo Zuzhi Gongcheng Yanjiu
Publication Type :
Academic Journal
Accession number :
163116731
Full Text :
https://doi.org/10.12307/2023.725