Back to Search Start Over

An Efficient Opal‐Suppressor Tryptophanyl Pair Creates New Routes for Simultaneously Incorporating up to Three Distinct Noncanonical Amino Acids into Proteins in Mammalian Cells**.

Authors :
Osgood, Arianna O.
Zheng, Yunan
Roy, Soumya Jyoti Singha
Biris, Nikolaos
Hussain, Myer
Loynd, Conor
Jewel, Delilah
Italia, James S.
Chatterjee, Abhishek
Source :
Angewandte Chemie International Edition. 5/2/2023, Vol. 62 Issue 19, p1-7. 7p.
Publication Year :
2023

Abstract

Site‐specific incorporation of multiple distinct noncanonical amino acids (ncAAs) into proteins in mammalian cells is a promising technology, where each ncAA must be assigned to a different orthogonal aminoacyl‐tRNA synthetase (aaRS)/tRNA pair that reads a distinct nonsense codon. Available pairs suppress TGA or TAA codons at a considerably lower efficiency than TAG, limiting the scope of this technology. Here we show that the E. coli tryptophanyl (EcTrp) pair is an excellent TGA‐suppressor in mammalian cells, which can be combined with the three other established pairs to develop three new routes for dual‐ncAA incorporation. Using these platforms, we site‐specifically incorporated two different bioconjugation handles into an antibody with excellent efficiency, and subsequently labeled it with two distinct cytotoxic payloads. Additionally, we combined the EcTrp pair with other pairs to site‐specifically incorporate three distinct ncAAs into a reporter protein in mammalian cells. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14337851
Volume :
62
Issue :
19
Database :
Academic Search Index
Journal :
Angewandte Chemie International Edition
Publication Type :
Academic Journal
Accession number :
163282663
Full Text :
https://doi.org/10.1002/anie.202219269