Back to Search Start Over

Limit Distributions for the Estimates of the Digamma Distribution Parameters Constructed from a Random Size Sample.

Authors :
Kudryavtsev, Alexey
Shestakov, Oleg
Source :
Mathematics (2227-7390). Apr2023, Vol. 11 Issue 8, p1778. 13p.
Publication Year :
2023

Abstract

In this paper, we study a new type of distribution that generalizes distributions from the gamma and beta classes that are widely used in applications. The estimators for the parameters of the digamma distribution obtained by the method of logarithmic cumulants are considered. Based on the previously proved asymptotic normality of the estimators for the characteristic index and the shape and scale parameters of the digamma distribution constructed from a fixed-size sample, we obtain a statement about the convergence of these estimators to the scale mixtures of the normal law in the case of a random sample size. Using this result, asymptotic confidence intervals for the estimated parameters are constructed. A number of examples of the limit laws for sample sizes with special forms of negative binomial distributions are given. The results of this paper can be widely used in the study of probabilistic models based on continuous distributions with an unbounded non-negative support. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
22277390
Volume :
11
Issue :
8
Database :
Academic Search Index
Journal :
Mathematics (2227-7390)
Publication Type :
Academic Journal
Accession number :
163433969
Full Text :
https://doi.org/10.3390/math11081778