Back to Search Start Over

Mutated Flt3Lg Provides Reduced Flt3 Recycling Compared to Wild-Type Flt3Lg and Retains the Specificity of Flt3Lg-Based CAR T-Cell Targeting in AML Models.

Authors :
Maiorova, Varvara
Mollaev, Murad D.
Vikhreva, Polina
Chudakov, Dmitriy M.
Kibardin, Alexey
Maschan, Michael A.
Larin, Sergey
Source :
International Journal of Molecular Sciences. Apr2023, Vol. 24 Issue 8, p7626. 15p.
Publication Year :
2023

Abstract

The cells of acute myeloid leukemia are defined by clonal growth and heterogenous immunophenotypes. Chimeric antigen receptors (CARs) commonly recognize molecular targets by single-chain antibody fragments (scFvs) specific to a tumor-associated antigen. However, ScFvs may form aggregates, thus stimulating tonic CAR T-cell activation and reducing CAR T-cell functioning in vivo. Harnessing natural ligands as recognition parts of CARs, specific targeting of membrane receptors can be achieved. Previously, we presented ligand-based Flt3-CAR T-cells targeting the Flt3 receptor. The extracellular part of Flt3-CAR consisted of full-size Flt3Lg. Meanwhile, upon recognition, Flt3-CAR may potentially activate Flt3, triggering proliferative signaling in blast cells. Moreover, the long-lasting presence of Flt3Lg may lead to Flt3 downregulation. In this paper, we present mutated Flt3Lg-based Flt3m-CAR ('m'—for 'mutant') T-cells targeting Flt3. The extracellular part of Flt3m-CAR consists of full-length Flt3Lg-L27P. We have determined that ED50 for recombinant Flt3Lg-L27P produced in CHO cells is at least 10-fold higher than for the wild-type Flt3Lg. We show that the mutation in the recognizing domain of Flt3m-CAR did not affect the specificity of Flt3m-CAR T-cells when compared to Flt3-CAR T-cells. Flt3m-CAR T-cells combine the specificity of ligand–receptor recognition with reduced Flt3Lg-L27P bioactivity, leading to potentially safer immunotherapy. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
24
Issue :
8
Database :
Academic Search Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
163435527
Full Text :
https://doi.org/10.3390/ijms24087626