Back to Search Start Over

Human induced pluripotent stem cell-derived cardiac myocytes and sympathetic neurons in disease modelling.

Authors :
Li, Ni
Edel, Michael
Liu, Kun
Denning, Chris
Betts, Jacob
Neely, Oliver C.
Li, Dan
Paterson, David J.
Source :
Philosophical Transactions of the Royal Society B: Biological Sciences. 6/19/2023, Vol. 378 Issue 1879, p1-10. 10p.
Publication Year :
2023

Abstract

Human induced pluripotent stem cells (hiPSC) offer an unprecedented opportunity to generate model systems that facilitate a mechanistic understanding of human disease. Current differentiation protocols are capable of generating cardiac myocytes (hiPSC-CM) and sympathetic neurons (hiPSC-SN). However, the ability of hiPSC-derived neurocardiac co-culture systems to replicate the human phenotype in disease modelling is still in its infancy. Here, we adapted current methods for efficient and replicable induction of hiPSC-CM and hiPSC-SN. Expression of cell-type-specific proteins were confirmed by flow cytometry and immunofluorescence staining. The utility of healthy hiPSC-CM was tested with pressor agents to develop a model of cardiac hypertrophy. Treatment with angiotensin II (AngII) resulted in: (i) cell and nuclear enlargement, (ii) enhanced fetal gene expression, and (iii) FRET-activated cAMP responses to adrenergic stimulation. AngII or KCl increased intracellular calcium transients in hiPSC-SN. Immunostaining in neurocardiac co-cultures demonstrated anatomical innervation to myocytes, where myocyte cytosolic cAMP responses were enhanced by forskolin compared with monocultures. In conclusion, human iPSC-derived cardiac myocytes and sympathetic neurons replicated many features of the anatomy and (patho)physiology of these cells, where co-culture preparations behaved in a manner that mimicked key physiological responses seen in other mammalian systems. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
09628436
Volume :
378
Issue :
1879
Database :
Academic Search Index
Journal :
Philosophical Transactions of the Royal Society B: Biological Sciences
Publication Type :
Academic Journal
Accession number :
163438079
Full Text :
https://doi.org/10.1098/rstb.2022.0173