Back to Search Start Over

Study of Complexity of Numerical Models of a Strengthened Timber Beam.

Authors :
Szczecina, Michał
Source :
Materials (1996-1944). May2023, Vol. 16 Issue 9, p3466. 16p.
Publication Year :
2023

Abstract

Laboratory research of wood–CFRP (carbon fiber reinforced polymer) structural elements, especially beams, is a scientific issue undertaken by many scientists. Research is often complemented with numerical analysis with the use of complex finite element method (FEM) models. Modern FEM software offers models that can reproduce such properties and phenomena as orthotropy and plasticity of wood and CFRP, delamination and mechanical behavior of adhesive layers, and damage of a strengthened element. The author of the paper reproduces numerical laboratory research of a four-point bending test of a glulam beam strengthened with CFRP tape. The main goal of the numerical research is an analysis of how the complexity of the FEM model influences the results of calculations, especially stress, deflection, and bearing capacity of the glulam beam. In some cases, a simpler model can be satisfactory, especially for a structural engineer, who takes into account serviceability limit states (permissible deflection of a structural member) and assumes that stress should not exceed the yield stress of timber. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19961944
Volume :
16
Issue :
9
Database :
Academic Search Index
Journal :
Materials (1996-1944)
Publication Type :
Academic Journal
Accession number :
163687221
Full Text :
https://doi.org/10.3390/ma16093466