Back to Search
Start Over
Effect of storage of wet brewer’s grains with incremental levels of salt on apparent total tract nutrient digestibility and purine derivative excretion in dairy heifers.
- Source :
-
Journal of Animal Science . Jan2021, Vol. 99 Issue 1, p1-8. 8p. 4 Charts. - Publication Year :
- 2021
-
Abstract
- Objectives of this study were to evaluate apparent total tract nutrient digestibility and purine derivative (PD) excretion in dairy heifers limit-fed diets containing wet brewer’s grains (WBG) treated with salt. A 12-wk replicated 4 × 4 Latin square was conducted using 8 Holstein heifers of 224.5 ± 19.4 d of age, and body weight (BW) of 219.2 ± 28.1 kg (mean ± SD). Fresh WBG were treated with 0%, 0.8%, 1.6%, and 2.4% salt and stored for 4 d before being fed. Salt was added either to the WBG or separately to equalize the amount of salt in the diet. The diet contained 9% grass silage, 47% corn silage, 19% corn meal, 17.6% WBG and salt, 2% soybean meal, and 3% mineral mix. Diets were formulated to be limit-fed at 2.15% of BW, provide 14% crude protein (CP) and 2.27 Mcal metabolizable energy (ME)/kg of dry matter (DM). Heifers were adapted to diets for 14 d followed by a 7-d collection period. Dry matter intake (DMI) was recorded daily during the collection week while BW was recorded once a week. Urine and fecal samples were collected during the last 4 d of the collection period. Acid insoluble ash was used as an internal marker to determine apparent nutrient digestibility. Weight loss of WBG during storage was determined from days 1 to 11 and initial and final yeast and mold counts were determined. Final yeast counts were similar among treatments while final mold counts tended to be lesser (P = 0.07) for the 0.8% and 1.6% salt treatments. Urinary volume was similar among treatments while allantoin (P = 0.14), and uric acid (P < 0.01) and total PD excretion tended to increase (P = 0.13) quadratically. DMI was varied by treatment (linear, quadratic, and cubic effects P < 0.01). Heifers fed the 0.8% treatment had the least DMI. Nonfiber carbohydrate (NFC) digestibility linearly decreased (P < 0.04) as salt increased. Digestibility of DM, and organic matter (OM), tended to decrease (P < 0.10) with increasing levels of salt added to WBG. Fat digestibility was quadratic with the greatest value for the 1.6% treatment. Treating WBG with salt reduced its deterioration based on lesser mold counts for the 0.8% and 1.6% treatments. These treatments had resulted in greater fat digestibility and tended to have increased PD excretion suggesting improved microbial protein synthesis. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 00218812
- Volume :
- 99
- Issue :
- 1
- Database :
- Academic Search Index
- Journal :
- Journal of Animal Science
- Publication Type :
- Academic Journal
- Accession number :
- 163853626
- Full Text :
- https://doi.org/10.1093/jas/skaa393