Back to Search Start Over

A Multiresolution Ensemble Hybrid 4DEnVar with Variable Ensemble Sizes to Improve Global and Tropical Cyclone Track Numerical Prediction.

Authors :
Jones, Erin A.
Wang, Xuguang
Source :
Monthly Weather Review. May2023, Vol. 151 Issue 5, p1145-1166. 22p. 1 Diagram, 3 Charts, 13 Graphs, 1 Map.
Publication Year :
2023

Abstract

The current global operational four-dimensional ensemble-variational (4DEnVar) data assimilation (DA) system at NCEP adopts a background ensemble at a reduced resolution, which restricts the range of spatial scales that the ensemble background error covariance can resolve. A prior study developed a multiresolution ensemble 4DEnVar method and determined that this approach can provide a comparable forecast to an approach using solely high-resolution members, while substantially reducing the computational cost. This study further develops the multiresolution ensemble 4DEnVar approach to allow for a flexible number of low- and high-resolution ensemble members as well as varying localization length scales between the high- and low-resolution ensembles. Three 4DEnVar experiments with the same computational costs are compared. The first experiment has an 80-member high-resolution background ensemble with single-scale optimally tuned localization (SR-High). The second and third experiments utilize the multiresolution background ensembles. One has 130 low-resolution and 40 high-resolution members (MR170) while the other has 180 low-resolution members and 24 high-resolution members (MR204). Both multiresolution ensemble experiments utilize differing localization radii with ensemble resolution. Despite having the same costs, both MR170 and MR204 improves global forecasts and decreases tropical cyclone track errors for up to 5 days' lead time compared to SR-High. Improvements are most apparent in larger-scale features, such as jet streams and the environmental steering flow of tropical cyclones. Additionally, MR170 outperforms MR204 in terms of global and tropical cyclone track forecasts, demonstrating the value of both increasing sampling at large scales and retaining substantial information at small scales. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00270644
Volume :
151
Issue :
5
Database :
Academic Search Index
Journal :
Monthly Weather Review
Publication Type :
Academic Journal
Accession number :
163988585
Full Text :
https://doi.org/10.1175/MWR-D-22-0186.1