Back to Search Start Over

A Unifying Model for the Role of Polyamines in Bacterial Cell Growth, the Polyamine Modulon.

Authors :
Yoshida, Madoka
Kashiwagi, Keiko
Shigemasa, Al
Taniguchi, Shiho
Yamamoto, Kaneyoshi
Makinoshima, Hideki
Ishihama, Akira
Igarashi, Kazuei
Source :
Journal of Biological Chemistry. 10/29/2004, Vol. 279 Issue 44, p46008-46013. 6p. 11 Diagrams, 2 Charts, 2 Graphs.
Publication Year :
2004

Abstract

We reported previously that the synthesis of specific proteins such as OppA, Cya, and RpoS (σ38), which are important for cell growth and viability, is stimulated by polyamines at the level of translation. In this study we found that the synthesis of FecI and Fis was also stimulated by polyamines at the level of translation. The FecI and Fis proteins enhance the expression of mRNAs that are involved in iron uptake and energy metabolism and the expression of rRNA and some tRNAs. The Shine-Dalgarno (SD) sequence of their mRNAs was not obvious or was not located at the usual position. When the SD sequences were created at the normal position on these mRNAs, protein synthesis was no longer influenced by polyamines. Thus, the common characteristic of these mRNAs was to have a weak or ineffective SD sequence. We propose that a group of genes whose expression is enhanced by polyamines at the level of translation be referred to as a "polyamine modulon." By DNA microarray, we found that 309 of 2,742 mRNA species were upregulated by polyamines. Among the 309 up-regulated genes, transcriptional enhancement of at least 58 genes might be attributable to increased levels of the transcription factors Cya, RpoS, FecI, and Fis, which are all organized in the polyamine modulon. This unifying molecular mechanism is proposed to underlie the physiological role of polyamines in controlling the growth of Escherichia coli. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00219258
Volume :
279
Issue :
44
Database :
Academic Search Index
Journal :
Journal of Biological Chemistry
Publication Type :
Academic Journal
Accession number :
16412649
Full Text :
https://doi.org/10.1074/jbc.M404393200