Back to Search Start Over

Laser assisted rapid 3D printing of continuous carbon fiber reinforced plastics: Simulation, characterization, and properties.

Authors :
Yiwen, Tu
Yuegang, Tan
Fan, Zhang
Jun, Zhang
Source :
Polymer Composites. Jun2023, Vol. 44 Issue 6, p3084-3094. 11p.
Publication Year :
2023

Abstract

3D printing of continuous fiber reinforce plastics (CCFRP) with fused deposition modeling is a burgeoning manufacturing method because of its exceptional mechanical properties. Nevertheless, it cannot manufacture parts at high speeds. Using laser heating instead of the traditional resistive heating in 3D printing of CCFRP has the potential to improve printing speed owing to its high heating efficiency. In this article, a process of laserā€assisted rapid 3D printing of CCFRP is proposed. The heating process of CCFRP by laser is analyzed and verified. The linear relation between printing speed and laser power is established. The experiments demonstrate that the printing speed is increased to 30 mm/s with the laser. The mechanical properties of printed parts, though enhanced as the printing speed and laser power increase, are better than those obtained by traditional methods. Scanning electron microscope images and experiments reveal that proper laser power is conducive to the melting of plastics, strengthening interlayer bonding, and reducing voids under roller pressure. Nonetheless, excessive laser power ablates the plastic, resulting in increased voids. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02728397
Volume :
44
Issue :
6
Database :
Academic Search Index
Journal :
Polymer Composites
Publication Type :
Academic Journal
Accession number :
164153251
Full Text :
https://doi.org/10.1002/pc.27303