Back to Search Start Over

Methodology for Mapping the Ecological Security Pattern and Ecological Network in the Arid Region of Xinjiang, China.

Authors :
Wang, Yishan
Zhang, Fei
Li, Xingyou
Johnson, Verner Carl
Tan, Mou Leong
Kung, Hsiang-Te
Shi, Jingchao
Bahtebay, Jupar
He, Xin
Source :
Remote Sensing. Jun2023, Vol. 15 Issue 11, p2836. 21p.
Publication Year :
2023

Abstract

Xinjiang is an important arid region in the northwest of China and plays an important role in the field of ecological security protection in China. Because of its aridity, the identification of critical areas for ecological protection and the optimization of ecological space structure in Xinjiang are of great significance for promoting the harmonious development of the oasis economy, enhancing the ecological environment, and improving human well-being. This study applied an ecological security evaluation from the three dimensions of habitat quality, ecosystem service value, and soil-water conservation to identify the basic situation of the ecological security pattern. The core "source" area of ecological protection was extracted using the morphological spatial pattern analysis (MSPA) method, while the ecological corridor and important ecological nodes were identified using the minimum cumulative resistance model (MCR). The "point-line-plane" three-dimensional ecological network structure was then constructed, providing a case for the development of the ecological security and construction in the oasis. The results showed that in the arid regions of Xinjiang, the ecological land is extremely fragmented and is mainly distributed in the mountains and waters distant from human activities. Overall, there is a substantial geographical disparity with a low level of ecological security, particularly in the ecological marginal areas. The ecological network framework of Xinjiang is characterized by an uneven distribution of "sources", broken corridor structure, and a low degree of networking. Therefore, this study proposed an ecological space layout system consisting of "7 ecological subsystems, 51 source areas, 87 ecological corridors, and 33 ecological nodes" by combining the regional physical and geographical characteristics with the overall development plan. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
11
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
164213173
Full Text :
https://doi.org/10.3390/rs15112836