Back to Search Start Over

Investigation of Unwanted Oscillations of Electrically Modulated Magnetoelectric Cantilever Sensors.

Authors :
Schmalz, Julius
Spetzler, Elizaveta
McCord, Jeffrey
Gerken, Martina
Source :
Sensors (14248220). Jun2023, Vol. 23 Issue 11, p5012. 16p.
Publication Year :
2023

Abstract

Magnetoelectric thin-film cantilevers consisting of strain-coupled magnetostrictive and piezoelectric layers are promising candidates for magnetic field measurements in biomedical applications. In this study, we investigate magnetoelectric cantilevers that are electrically excited and operated in a special mechanical mode with resonance frequencies above 500 kHz. In this particular mode, the cantilever bends in the short axis, forming a distinctive U-shape and exhibiting high-quality factors and a promising limit of detection of 70 p T / Hz 1/2 at 10 Hz. Despite this U mode, the sensors show a superimposed mechanical oscillation along the long axis. The induced local mechanical strain in the magnetostrictive layer results in magnetic domain activity. Due to this, the mechanical oscillation may cause additional magnetic noise, deteriorating the limit of detection of such sensors. We compare finite element method simulations with measurements of magnetoelectric cantilevers in order to understand the presence of oscillations. From this, we identify strategies for eliminating the external effects that affect sensor operation. Furthermore, we investigate the influence of different design parameters, in particular the cantilever length, material parameters and the type of clamping, on the amplitude of the undesired superimposed oscillations. We propose design guidelines to minimize the unwanted oscillations. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14248220
Volume :
23
Issue :
11
Database :
Academic Search Index
Journal :
Sensors (14248220)
Publication Type :
Academic Journal
Accession number :
164216651
Full Text :
https://doi.org/10.3390/s23115012