Back to Search Start Over

Investigating the Theranostic Potential of Graphene Quantum Dots in Alzheimer's Disease.

Authors :
Walton-Raaby, Max
Woods, Riley
Kalyaanamoorthy, Subha
Source :
International Journal of Molecular Sciences. Jun2023, Vol. 24 Issue 11, p9476. 20p.
Publication Year :
2023

Abstract

Alzheimer's disease (AD) is one of the leading causes of death worldwide, with no definitive diagnosis or known cure. The aggregation of Tau protein into neurofibrillary tangles (NFTs), which contain straight filaments (SFs) and paired helical filaments (PHFs), is a major hallmark of AD. Graphene quantum dots (GQDs) are a type of nanomaterial that combat many of the small-molecule therapeutic challenges in AD and have shown promise in similar pathologies. In this study, two sizes of GQDs, GQD7 and GQD28, were docked to various forms of Tau monomers, SFs, and PHFs. From the favorable docked poses, we simulated each system for at least 300 ns and calculated the free energies of binding. We observed a clear preference for GQD28 in the PHF6 (306VQIVYK311) pathological hexapeptide region of monomeric Tau, while GQD7 targeted both the PHF6 and PHF6* (275VQIINK280) pathological hexapeptide regions. In SFs, GQD28 had a high affinity for a binding site that is available in AD but not in other common tauopathies, while GQD7 behaved promiscuously. In PHFs, GQD28 interacted strongly near the protofibril interface at the putative disaggregation site for epigallocatechin-3-gallate, and GQD7 largely interacted with PHF6. Our analyses revealed several key GQD binding sites that may be used for detecting, preventing, and disassembling the Tau aggregates in AD. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
24
Issue :
11
Database :
Academic Search Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
164218392
Full Text :
https://doi.org/10.3390/ijms24119476