Back to Search Start Over

Magnetic Circuit Optimization and Physical Modeling of Giant Magnetostrictive Actuator.

Authors :
Li, Yuesong
Source :
Shock & Vibration. 6/9/2023, p1-16. 16p.
Publication Year :
2023

Abstract

Due to the excellent performance, giant magnetostrictive actuator is used in the active vibration isolation control system. However, its hysteresis nonlinear dynamic model is too complex for engineering practical applications, so it is necessary to establish an accurate and easy-to-use model. Based on Simulink/Simcape, a magnetic circuit model and a nonlinear dynamic physical model of the giant magnetostrictive actuator are developed. In the optimization of the magnetic circuit, the uniform distribution and the magnetic energy utilization of the giant magnetostrictive actuator are taken as the optimization objective, and the design criteria of the magnetic circuit are given. The hysteresis performance between the current and the magnetization is analyzed by simulating the magnetic circuit model. From the perspective of energy conservation, a linear magnetostrictive model which can reflect the effects of the frequency doubling and preload is established. Finally, the accuracy of the nonlinear dynamic physical model for the giant magnetostrictive actuator is verified by an experiment. The results show that the physical model agrees well with the experiment results not only under the quasistatic operating conditions but also under dynamic operating conditions. The error of the output displacement of the GMA under step response is less than 0.6 μm. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10709622
Database :
Academic Search Index
Journal :
Shock & Vibration
Publication Type :
Academic Journal
Accession number :
164285941
Full Text :
https://doi.org/10.1155/2023/7379276