Back to Search
Start Over
Deep learning regressor model based on nigrosome MRI in Parkinson syndrome effectively predicts striatal dopamine transporter-SPECT uptake.
- Source :
-
Neuroradiology . Jul2023, Vol. 65 Issue 7, p1101-1109. 9p. - Publication Year :
- 2023
-
Abstract
- Purpose: Nigrosome imaging using susceptibility-weighted imaging (SWI) and dopamine transporter imaging using 123I-2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl)-nortropane (123I-FP-CIT) single-photon emission computerized tomography (SPECT) can evaluate Parkinsonism. Nigral hyperintensity from nigrosome-1 and striatal dopamine transporter uptake are reduced in Parkinsonism; however, quantification is only possible with SPECT. Here, we aimed to develop a deep-learning-based regressor model that can predict striatal 123I-FP-CIT uptake on nigrosome magnetic resonance imaging (MRI) as a biomarker for Parkinsonism. Methods: Between February 2017 and December 2018, participants who underwent 3 T brain MRI including SWI and 123I-FP-CIT SPECT based on suspected Parkinsonism were included. Two neuroradiologists evaluated the nigral hyperintensity and annotated the centroids of nigrosome-1 structures. We used a convolutional neural network-based regression model to predict striatal specific binding ratios (SBRs) measured via SPECT using the cropped nigrosome images. The correlation between measured and predicted SBRs was evaluated. Results: We included 367 participants (203 women (55.3%); age, 69.0 ± 9.2 [range, 39–88] years). Random data from 293 participants (80%) were used for training. In the test set (74 participants [20%]), the measured and predicted 123I-FP-CIT SBRs were significantly lower with the loss of nigral hyperintensity (2.31 ± 0.85 vs. 2.44 ± 0.90) than with intact nigral hyperintensity (4.16 ± 1.24 vs. 4.21 ± 1.35, P < 0.01). The sorted measured 123I-FP-CIT SBRs and the corresponding predicted values were significantly and positively correlated (ρc = 0.7443; 95% confidence interval, 0.6216–0.8314; P < 0.01). Conclusion: A deep learning-based regressor model effectively predicted striatal 123I-FP-CIT SBRs based on nigrosome MRI with high correlation using manually-measured values, enabling nigrosome MRI as a biomarker for nigrostriatal dopaminergic degeneration in Parkinsonism. [ABSTRACT FROM AUTHOR]
- Subjects :
- *PARKINSON'S disease diagnosis
*DEEP learning
*BIOMARKERS
*CONFIDENCE intervals
*MAGNETIC resonance imaging
*CASE-control method
*DOPAMINE
*SINGLE-photon emission computed tomography
*MEMBRANE transport proteins
*DESCRIPTIVE statistics
*RESEARCH funding
*ARTIFICIAL neural networks
*NEURORADIOLOGY
*DOPAMINERGIC imaging
*LONGITUDINAL method
Subjects
Details
- Language :
- English
- ISSN :
- 00283940
- Volume :
- 65
- Issue :
- 7
- Database :
- Academic Search Index
- Journal :
- Neuroradiology
- Publication Type :
- Academic Journal
- Accession number :
- 164356649
- Full Text :
- https://doi.org/10.1007/s00234-023-03168-z