Back to Search Start Over

Ferroelectric polarization enhancing photocatalytic performance of 2D carbon and oxygen co-doping g-C3N4/α-In2Se3 heterostructure: A conversion of traditional type-II to S-scheme.

Authors :
Pan, Ling-Yu
Liu, Biao
Yang, Junliang
Yin, Shuang-Feng
Cai, Meng-Qiu
Source :
Applied Physics Letters. 6/12/2023, Vol. 122 Issue 24, p1-8. 8p.
Publication Year :
2023

Abstract

Ferroelectric materials with internal spontaneous polarization are conducive to enhancing photocatalytic performance by promoting photogenerated carriers separation. However, the traditional perovskite-type ferroelectric photocatalysts possess a typical 3D structure that is constrained by few exposed catalytic active sites and low specific surface area when compared to a 2D structure. In our study, the electronic properties of the 2D ferroelectric heterostructure for carbon and oxygen co-doping g-C3N4 (COCN)/In2Se3 with different out-of-plane ferroelectric polarization directions are investigated by first-principle calculations, namely, COCN/DOWN and COCN/UP heterostructures. The results show that when the ferroelectric polarization of the 2D In2Se3 layer in heterostructures is reversed, the heterostructure switches from traditional type-II (COCN/DOWN heterostructure) with an indirect bandgap of 1.58 eV to S-scheme (COCN/UP heterostructure) with a direct bandgap of 1.43 eV, in which the band edge positions of the S-scheme COCN/UP heterostructure satisfy the redox potential of the efficient photocatalytic selective oxidation of toluene to benzaldehyde. Further investigations revealed that the application of an electric field 0 ∼ +0.3 V/Å can reduce the bandgap and enhance the out-of-plane polarization of the COCN/UP heterostructure, which improve the photocatalytic activity of the S-scheme COCN/UP heterostructure. This work highlights the significance of ferroelectric polarization for charge transfer in heterostructures and provides theoretical guidance for the design of high-performance S-scheme photocatalysts. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00036951
Volume :
122
Issue :
24
Database :
Academic Search Index
Journal :
Applied Physics Letters
Publication Type :
Academic Journal
Accession number :
164374148
Full Text :
https://doi.org/10.1063/5.0154934