Back to Search Start Over

Performance enhancement of electromagnetic vibration energy harvesters via bi-stable structure based on MEMS 3D coils.

Authors :
Xiao, Wensong
Wu, Hanxiao
Xu, Tiantong
Lv, Pin
Tao, Zhi
Li, Haiwang
Wang, Wenbin
Source :
Applied Physics Letters. 6/19/2023, Vol. 122 Issue 25, p1-8. 8p.
Publication Year :
2023

Abstract

In this study, we conducted a systematic exploration of a micro-electromagnetic vibration energy harvester with a bi-magnet structure and microelectromechanical systems 3D coils. First, we establish a physical model of stiffness and damping characteristics based on the superposition principle for the bi-magnet structure which has also been verified experimentally. Then, we investigate the influence of magnet gap and air gap on the stiffness and the magnetic flux change rate, mainly focusing on the distance and the potential barrier between the two potential wells. Finally, we fabricate and assemble the bi-magnet VEH prototype and tested the output performance under 1 and 6g excitation, which correspond the intra-well vibration and inter-well vibration, respectively. The tested results show that under 1g excitation, the prototype can output 155.38 μW power with 32 Hz half-power bandwidth and 4939.06 μW·Hz integrated power, which are obviously higher than those for mono-magnet under same excitation. When the excitation raises to 6g, the output power is improved to 362.98 μW with the half power bandwidth and integrated power enhanced to 56 Hz and 9289.96 μW·Hz, respectively. The tested results also prove that the structure proposed in this study can significantly enhance the output performance compared with a mono-magnet structure and other published data. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
00036951
Volume :
122
Issue :
25
Database :
Academic Search Index
Journal :
Applied Physics Letters
Publication Type :
Academic Journal
Accession number :
164486155
Full Text :
https://doi.org/10.1063/5.0151342