Back to Search Start Over

Influence of matrix modification on interlaminar fracture toughness of glass epoxy laminates using nano and micro fillers.

Authors :
Joshi, Anant
Gouda, P. S. Shivakumar
Sridhar, I.
Farooq, M. A. Umar
Uppin, Vinayak S.
Prashanth, B. H. Maruthi
Source :
Fracture & Structural Integrity / Frattura ed Integrità Strutturale. Jul2023, Vol. 17 Issue 65, p57-75. 17p.
Publication Year :
2023

Abstract

Fiber-reinforced polymer (FRP) is a composite material made of a polymer matrix reinforced with fibers. Hybrid composites are referred to as high-performance FRP materials used in safety-critical structural applications. Generally, FRP composite laminates are very weak in their out-of-plane properties, to address this issue unidirectional (UD) Glass laminates are prepared by modifying the matrix using plasma-treated multi-walled carbon nanotubes (MWCNTs) in epoxy matrix and compared fracture toughness characteristics with low-cost micro fillers like Aluminum oxide (Al2O3) and Sodium Carbonate (Na2CO3). These Nano and Micro fillers are loaded with 0.5wt%, 1wt% and 2wt% in the epoxy matrix while making FRP laminates. Adding these fillers into the epoxy matrix was caused a significant increase in the out-of-plane load-bearing capacity of the composites as compared to plain Glass epoxy laminates. Thus, the fracture toughness was enhanced by 20-26% and 14-17% under mode I and mode II loading respectively. Further, a Scanning electron microscopic analysis was also done on delaminated glass laminates to understand the failure mechanisms. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
19718993
Volume :
17
Issue :
65
Database :
Academic Search Index
Journal :
Fracture & Structural Integrity / Frattura ed Integrità Strutturale
Publication Type :
Academic Journal
Accession number :
164569877
Full Text :
https://doi.org/10.3221/IGF-ESIS.65.05