Back to Search Start Over

Corrosion Resistance of CeO 2 -GO/Epoxy Nanocomposite Coating in Simulated Seawater and Concrete Pore Solutions.

Authors :
Liu, Xiaoyan
Wu, Zitao
Lyu, Yaoyao
Li, Tianyu
Yang, Heng
Liu, Yanqi
Liu, Ruidan
Xie, Xian
Lyu, Kai
Shah, Surendra P.
Source :
Polymers (20734360). Jun2023, Vol. 15 Issue 12, p2602. 19p.
Publication Year :
2023

Abstract

Reinforced concrete structures in the marine environment face serious corrosion risks. Coating protection and adding corrosion inhibitors are the most economical and effective methods. In this study, a nano-composite anti-corrosion filler with a mass ratio of CeO2:GO = 4:1 was prepared by hydrothermally growing cerium oxide on the surface of graphene oxide. The filler was mixed with pure epoxy resin at a mass fraction of 0.5% to prepare a nano-composite epoxy coating. The basic properties of the prepared coating were evaluated from the aspects of surface hardness, adhesion grade, and anti-corrosion performance on Q235 low carbon steel subjected to simulated seawater and simulated concrete pore solutions. Results showed that after 90 days of service, the corrosion current density of the nanocomposite coating mixed with corrosion inhibitor was the lowest (Icorr = 1.001 × 10−9 A/cm2), and the protection efficiency was up to 99.92%. This study provides a theoretical foundation for solving the corrosion problem of Q235 low carbon steel in the marine environment. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20734360
Volume :
15
Issue :
12
Database :
Academic Search Index
Journal :
Polymers (20734360)
Publication Type :
Academic Journal
Accession number :
164702756
Full Text :
https://doi.org/10.3390/polym15122602