Back to Search
Start Over
Loss of IP3R-BK Ca Coupling Is Involved in Vascular Remodeling in Spontaneously Hypertensive Rats.
- Source :
-
International Journal of Molecular Sciences . Jul2023, Vol. 24 Issue 13, p10903. 15p. - Publication Year :
- 2023
-
Abstract
- Mechanisms by which BKCa (large-conductance calcium-sensitive potassium) channels are involved in vascular remodeling in hypertension are not fully understood. Vascular smooth muscle cell (VSMC) proliferation and vascular morphology were compared between hypertensive and normotensive rats. BKCa channel activity, protein expression, and interaction with IP3R (inositol 1,4,5-trisphosphate receptor) were examined using patch clamp, Western blot analysis, and coimmunoprecipitation. On inside-out patches of VSMCs, the Ca2+-sensitivity and voltage-dependence of BKCa channels were similar between hypertensive and normotensive rats. In whole-cell patch clamp configuration, treatment of cells with the IP3R agonist, Adenophostin A (AdA), significantly increased BKCa channel currents in VSMCs of both strains of rats, suggesting IP3R-BKCa coupling; however, the AdA-induced increases in BKCa currents were attenuated in VSMCs of hypertensive rats, indicating possible IP3R-BKCa decoupling, causing BKCa dysfunction. Co-immunoprecipitation and Western blot analysis demonstrated that BKCa and IP3R proteins were associated together in VSMCs; however, the association of BKCa and IP3R proteins was dramatically reduced in VSMCs of hypertensive rats. Genetic disruption of IP3R-BKCa coupling using junctophilin-2 shRNA dramatically augmented Ang II-induced proliferation in VSMCs of normotensive rats. Subcutaneous infusion of NS1619, a BKCa opener, to reverse BKCa dysfunction caused by IP3R-BKCa decoupling significantly attenuated vascular hypertrophy in hypertensive rats. In summary, the data from this study demonstrate that loss of IP3R-BKCa coupling in VSMCs induces BKCa channel dysfunction, enhances VSMC proliferation, and thus, may contribute to vascular hypertrophy in hypertension. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 16616596
- Volume :
- 24
- Issue :
- 13
- Database :
- Academic Search Index
- Journal :
- International Journal of Molecular Sciences
- Publication Type :
- Academic Journal
- Accession number :
- 164919519
- Full Text :
- https://doi.org/10.3390/ijms241310903