Back to Search Start Over

Quantifying Multi-Scale Performance of Geometric Features for Efficient Extraction of Insulators from Point Clouds.

Authors :
Tang, Jie
Tan, Junxiang
Du, Yongyong
Zhao, Haojie
Li, Shaoda
Yang, Ronghao
Zhang, Tao
Li, Qitao
Source :
Remote Sensing. Jul2023, Vol. 15 Issue 13, p3339. 19p.
Publication Year :
2023

Abstract

Insulator extraction from images or 3D point clouds is an important part of automatic power inspection by unmanned airborne vehicles (UAVs), which is vital for improving the efficiency of inspection and the stability of power grids. However, for point cloud data, many challenges, such as the diversity of pylon shape and insulator type, complex topology, and similarity of structures, were not tackled with the study of power element extraction. To efficiently identify the small insulators from complex power transmission corridor (PTC) scenarios, this paper proposes a robust extraction method by fusing multi-scale neighborhood and multi-feature entropy weighting. The pylon head is segmented according to the aspect ratio of horizontal slices following the locating of the pylons based on the height difference and continuous vertical distribution firstly. Aiming to quantify the different contributions of features in decision-making and better segment insulators, a feature evaluation system combined with information entropy, eigen entropy-based optimal neighborhood selection, and designed multi-scale features is constructed to identify suspension insulators and tension insulators. In the optimization step, a region erosion and growing method is proposed to segment complete insulator strings by enlarging the perspectives to obtain more object representations. The extraction results of 82 pylons with 654 insulators demonstrate that the proposed method is suitable for different pylon shapes and sizes. The identification accuracy of the whole line achieves 98.23% and the average F1 score is 90.98%. The proposed method can provide technical support for automatic UAV inspection and pylon reconstruction. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
13
Database :
Academic Search Index
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
164922252
Full Text :
https://doi.org/10.3390/rs15133339