Back to Search Start Over

Computation of micropolar nanofluid from a wedge with heterogeneous carbon/metallic nanoparticles, viscous dissipation and heat sink/source: rheological nanocoating flow simulation.

Authors :
Umavathi, J. C.
Kumar, Mahesh Ashok
Bég, O. Anwar
Source :
International Journal of Modelling & Simulation. Jul2023, p1-17. 17p. 7 Illustrations, 3 Charts.
Publication Year :
2023

Abstract

Motivated by nanotechnological coating applications, a theoretical study is presented for the laminar, steady-state, incompressible nonlinear boundary layer flow of a non-Newtonian nanofluid external to a wedge-shaped configuration. The wedge surface is assumed to be isothermal. The Eringen micropolar model is deployed for rheological properties of the nanofluid. The dimensionless thermal perimeter layer equations are solved with the efficient MATLAB bvp4c numerical scheme. Validation with earlier studies is conducted. Aqueous-based nano-polymers are examined with either metallic/metallic oxide or carbon-based nanoparticles. The influence of Hartree pressure gradient parameter, Eringen vortex viscosity parameter, nanoparticle volume fraction, heat absorption parameter, Prandtl number and nanoparticle type on velocity, angular velocity, temperature, skin friction function and Nusselt number function are visualized graphically and in tables. Temperature is strongly elevated with increasing micropolar parameter and nanoparticle volume fraction. Velocity is boosted with increasing nanoparticle volume fraction. Temperatures are elevated with heat source but suppressed with heat sink. Temperatures are a maximum for silver and progressively lower for copper, diamond and with a minimum for titania. Skin friction is boosted with pressure gradient parameter whereas Nusselt number is depleted. Nusselt number is observed to be a maximum for diamond whereas it is a minimum for silver. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
02286203
Database :
Academic Search Index
Journal :
International Journal of Modelling & Simulation
Publication Type :
Academic Journal
Accession number :
166099268
Full Text :
https://doi.org/10.1080/02286203.2023.2237846