Back to Search Start Over

CuCoO2 Nanoparticles as a Nanoprotease for Selective Proteolysis with High Efficiency at Room Temperature.

Authors :
Xu, Jiahao
Ji, Ningning
Guo, Mingxiu
Wang, Yaru
Xu, Xiaolong
Source :
Angewandte Chemie International Edition. Aug2023, Vol. 62 Issue 31, p1-8. 8p.
Publication Year :
2023

Abstract

Many nanoproteases contain tetravalent metal ions and catalyze peptide‐bond hydrolysis only at high temperature (60 °C). Here, we report a new and effective strategy to explore nanoproteases from nanoparticles containing low valent metal ions. We found that flower‐like CuCoO2 nanoparticles (CuCoO2 NPs) containing low valent Cu+ possessed excellent catalytic activity towards selective cleavage of peptide bonds with hydrophobic residues in bovine serum albumin (BSA) at room temperature. CuCoO2 NPs exhibited excellent stability and had great reusability. CuCoO2 NPs also hydrolyzed heat‐denatured and surfactant‐denatured BSA. Mechanism analysis revealed that the high Lewis acidity of Co3+ and the low valence of Cu+ were both essential for the high protease activity of CuCoO2 NPs. The flower‐like structure of CuCoO2 NPs and the strong nucleophilicity of Cu+‐bound hydroxyl endow them with excellent catalytic performance. The findings open a new way for the design and discovery of high‐efficiency nanoproteases. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
14337851
Volume :
62
Issue :
31
Database :
Academic Search Index
Journal :
Angewandte Chemie International Edition
Publication Type :
Academic Journal
Accession number :
166735140
Full Text :
https://doi.org/10.1002/anie.202304554