Back to Search Start Over

A novel optimization control of gas turbine based on a hybrid method using the BELBIC and adaptive multi input multi output feedback control.

Authors :
Li, Lin
Source :
Journal of Intelligent & Fuzzy Systems. 2023, Vol. 45 Issue 1, p863-876. 14p.
Publication Year :
2023

Abstract

In recent years, the use of Gas Turbines (GTs) to generate electricity has grown exponentially. Therefore, for the optimal performance of gas power plants, a lot of research has been done on modeling different parts of GTs, estimating model parameters, and controlling them. But most of the available methods are not accurate enough, like most linear methods, or are model-based, which require an accurate model of the system (like most nonlinear methods), or there is a constant need to adjust the controller parameters. To address these shortcomings, this study uses a new hybrid method including the brain emotional learning-based intelligent controller, the nonlinear multivariate method in the form of feedback linearization, and an adaptive control method of mode predictive reference model used to quickly control the GT. The Rowen model is used to simulate the nonlinear model of the GT. Owing to the influence of exhaust temperature on the speed of GT and the multivariate system model, nonlinear multivariate controller design is considered. First, the adaptive control method of the state-predictive reference model for a multi-output multi-input system, in general, is presented, and then, the proposed method for a GT with real dynamic values is implemented. The simulation results show the ability of the proposed controller to control the GT. In order to prove the efficiency of the proposed method, the obtained results are compared with the PID industrial controller method and the classical reference model method. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
10641246
Volume :
45
Issue :
1
Database :
Academic Search Index
Journal :
Journal of Intelligent & Fuzzy Systems
Publication Type :
Academic Journal
Accession number :
167307045
Full Text :
https://doi.org/10.3233/JIFS-221408