Back to Search
Start Over
Dual Charge Transfer Generated from Stable Mixed‐Valence Radical Crystals for Boosting Solar‐to‐Thermal Conversion.
- Source :
-
Advanced Science . 7/27/2023, Vol. 10 Issue 21, p1-10. 10p. - Publication Year :
- 2023
-
Abstract
- Realizing dual charge transfer (CT) based on stable organic radicals in one system is a long‐sought goal, however, remains challenging. In this work, a stable mixed‐valence radical crystal is designed via a surfactant‐assisted method, namely TTF‐(TTF+•)2‐RC (where TTF = tetrathiafulvalene), containing dual CT interactions. The solubilization of surfactants enables successful co‐crystallization of mixed‐valence TTF molecules with different polarity in aqueous solutions. Short intermolecular distances between adjacent TTF moieties within TTF‐(TTF+•)2‐RC facilitate both inter‐valence CT (IVCT) between neutral TTF and TTF+•, and inter‐radical CT (IRCT) between two TTF+• in radical π‐dimer, which are confirmed by single‐crystal X‐ray diffraction, solid‐state absorption, electron spin resonance measurements, and DFT calculations. Moreover, TTF‐(TTF+•)2‐RC reveals an open‐shell singlet diradical ground state with the antiferromagnetic coupling of 2J = −657 cm−1 and an unprecedented temperature‐dependent magnetic property, manifesting the main monoradical characters of IVCT at 113–203 K while the spin‐spin interactions in radical dimers of IRCT are predominant at 263–353 K. Notably, dual CT characters endow TTF‐(TTF+•)2‐RC with strong light absorption over the full solar spectrum and outstanding stability. As a result, TTF‐(TTF+•)2‐RC exhibits significantly enhanced photothermal property, an increase of 46.6 °C within 180 s upon one‐sun illumination. [ABSTRACT FROM AUTHOR]
Details
- Language :
- English
- ISSN :
- 21983844
- Volume :
- 10
- Issue :
- 21
- Database :
- Academic Search Index
- Journal :
- Advanced Science
- Publication Type :
- Academic Journal
- Accession number :
- 168591506
- Full Text :
- https://doi.org/10.1002/advs.202300980