Back to Search Start Over

Experimental Liver Cirrhosis Inhibits Restenosis after Balloon Angioplasty.

Authors :
Mechelinck, Mare
Hein, Marc
Kupp, Carolin
Braunschweig, Till
Helmedag, Marius J.
Klinkenberg, Axel
Habigt, Moriz A.
Klinge, Uwe
Tolba, René H.
Uhlig, Moritz
Source :
International Journal of Molecular Sciences. Jul2023, Vol. 24 Issue 14, p11351. 15p.
Publication Year :
2023

Abstract

The effect of liver cirrhosis on vascular remodeling in vivo remains unknown. Therefore, this study investigates the influence of cholestatic liver cirrhosis on carotid arterial remodeling. A total of 79 male Sprague Dawley rats underwent bile duct ligation (cirrhotic group) or sham surgery (control group) and 28 days later left carotid artery balloon dilatation; 3, 7, 14 and 28 days after balloon dilatation, the rats were euthanized and carotid arteries were harvested. Histological sections were planimetrized, cell counts determined, and systemic inflammatory parameters measured. Up to day 14 after balloon dilatation, both groups showed a comparable increase in neointima area and degree of stenosis. By day 28, however, both values were significantly lower in the cirrhotic group (% stenosis: 20 ± 8 vs. 42 ± 10, p = 0.010; neointimal area [mm2]: 0.064 ± 0.025 vs. 0.138 ± 0.025, p = 0.024). Simultaneously, cell density in the neointima (p = 0.034) and inflammatory parameters were significantly higher in cirrhotic rats. This study demonstrates that cholestatic liver cirrhosis in rats substantially increases neointimal cell consolidation between days 14 and 28. Thereby, consolidation proved important for the degree of stenosis. This may suggest that patients with cholestatic cirrhosis are at lower risk for restenosis after coronary intervention. [ABSTRACT FROM AUTHOR]

Details

Language :
English
ISSN :
16616596
Volume :
24
Issue :
14
Database :
Academic Search Index
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
169324239
Full Text :
https://doi.org/10.3390/ijms241411351